Lineaarne planeerimine ja selle rakendused

Paljude asjatundjate arvates on lineaarne planeerimine (LP) rakendusmatemaatika kõige efektiivsemaks osutunud haru. Lineaarse planeerimise rakendusvaldkond on väga lai, alates tootmise juhtimisest ja toodangu planeerimisest, sõjaasjan-dusest, insenertehnilistest ülesannetest, transpordivoogude planeerimisest, varude juhtimisest ja lõpetades pahaloomuliste kasvajate raviga. Lisaks sellele saab LP kasutada matemaati-lise taustaga ülesannetes, näiteks mittelineaarses planeerimise lubatavate suundade meetodis tuleb igal sammul lahendada üks LP ülesanne, samuti ka täisarvulises planeerimises. Paljud juhtimise, praktilise majandustegevuse kui ka tavapärase elu probleemid on oma olemuselt variantide valiku ülesanded. Sõltuvalt tegevuse eesmärgist tuleb esmalt valida efektiivsuse kriteerium, mis lihtsaimal juhul võib olla lineaarne otsustus-muutujate funktsioon, näiteks võib see olla summaarne kasum, tootmisjääkide või transpordikulude miinimum, raketiga siht-märgi tabamise tõenäosuse maksimum jne. Ka kitsendus-funktsioonid võivad olla lineaarsed. Kui LP ülesande lahend ei määra rahuldavat tegevusplaani, tuleb lisada või kõrvaldada kitsendusi ja muutujaid.See raamat on mõeldud eelkõige majandusteaduskonna üli-õpilastele, aga siit leiavad kasulikke näpunäiteid kõik ekstree-mumülesannete lahendamisest huvitatud spetsialistid. Autor pole seadnud eesmärgiks lineaarse planeerimise ja selle raken-dustega seotud teooria ranget ja süstemaatilist esitamist. Kõik meetodid ja teooria põhiseisukohad selgitatakse lihtsate näide-te varal, mis peaksid olema arusaadavad ka kesise matemaati-lise tasemega lugejatele, kes on huvitatud eelkõige praktilis-test rakendustest. Lisaks kooliprogrammile on vajalikud ainult elementaarsed teadmised lineaaralgebrast ja tõenäosus-teooriast. Selline raamatu kirjutamise eesmärk määras ka esitluslaadi, kus tõestusi on minimaalselt, nende asemel aga palju lõpuni lahendatud väikesemõõtmelisi näidisülesandeid.